Metamath Proof Explorer


Theorem vtxdusgr0edgnel

Description: A vertex in a simple graph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof shortened by AV, 24-Dec-2020)

Ref Expression
Hypotheses vtxdushgrfvedg.v V = Vtx G
vtxdushgrfvedg.e E = Edg G
vtxdushgrfvedg.d D = VtxDeg G
Assertion vtxdusgr0edgnel G USGraph U V D U = 0 ¬ e E U e

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V = Vtx G
2 vtxdushgrfvedg.e E = Edg G
3 vtxdushgrfvedg.d D = VtxDeg G
4 usgruhgr G USGraph G UHGraph
5 1 2 3 vtxduhgr0edgnel G UHGraph U V D U = 0 ¬ e E U e
6 4 5 sylan G USGraph U V D U = 0 ¬ e E U e