Metamath Proof Explorer


Theorem vtxdusgr0edgnelALT

Description: Alternate proof of vtxdusgr0edgnel , not based on vtxduhgr0edgnel . A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vtxdushgrfvedg.v V = Vtx G
vtxdushgrfvedg.e E = Edg G
vtxdushgrfvedg.d D = VtxDeg G
Assertion vtxdusgr0edgnelALT G USGraph U V D U = 0 ¬ e E U e

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V = Vtx G
2 vtxdushgrfvedg.e E = Edg G
3 vtxdushgrfvedg.d D = VtxDeg G
4 1 2 3 vtxdusgrfvedg G USGraph U V D U = e E | U e
5 4 eqeq1d G USGraph U V D U = 0 e E | U e = 0
6 fvex Edg G V
7 2 6 eqeltri E V
8 7 rabex e E | U e V
9 hasheq0 e E | U e V e E | U e = 0 e E | U e =
10 8 9 mp1i G USGraph U V e E | U e = 0 e E | U e =
11 rabeq0 e E | U e = e E ¬ U e
12 ralnex e E ¬ U e ¬ e E U e
13 12 a1i G USGraph U V e E ¬ U e ¬ e E U e
14 11 13 syl5bb G USGraph U V e E | U e = ¬ e E U e
15 5 10 14 3bitrd G USGraph U V D U = 0 ¬ e E U e