Metamath Proof Explorer


Theorem vtxdusgradjvtx

Description: The degree of a vertex in a simple graph is the number of vertices adjacent to this vertex. (Contributed by Alexander van der Vekens, 9-Jul-2018) (Revised by AV, 23-Dec-2020)

Ref Expression
Hypotheses vtxdusgradjvtx.v V = Vtx G
vtxdusgradjvtx.e E = Edg G
Assertion vtxdusgradjvtx G USGraph U V VtxDeg G U = v V | U v E

Proof

Step Hyp Ref Expression
1 vtxdusgradjvtx.v V = Vtx G
2 vtxdusgradjvtx.e E = Edg G
3 1 hashnbusgrvd G USGraph U V G NeighbVtx U = VtxDeg G U
4 1 2 nbusgrvtx G USGraph U V G NeighbVtx U = v V | U v E
5 4 fveq2d G USGraph U V G NeighbVtx U = v V | U v E
6 3 5 eqtr3d G USGraph U V VtxDeg G U = v V | U v E