Metamath Proof Explorer


Theorem vtxdusgradjvtx

Description: The degree of a vertex in a simple graph is the number of vertices adjacent to this vertex. (Contributed by Alexander van der Vekens, 9-Jul-2018) (Revised by AV, 23-Dec-2020)

Ref Expression
Hypotheses vtxdusgradjvtx.v V=VtxG
vtxdusgradjvtx.e E=EdgG
Assertion vtxdusgradjvtx GUSGraphUVVtxDegGU=vV|UvE

Proof

Step Hyp Ref Expression
1 vtxdusgradjvtx.v V=VtxG
2 vtxdusgradjvtx.e E=EdgG
3 1 hashnbusgrvd GUSGraphUVGNeighbVtxU=VtxDegGU
4 1 2 nbusgrvtx GUSGraphUVGNeighbVtxU=vV|UvE
5 4 fveq2d GUSGraphUVGNeighbVtxU=vV|UvE
6 3 5 eqtr3d GUSGraphUVVtxDegGU=vV|UvE