Metamath Proof Explorer


Theorem vtxdusgrfvedg

Description: The value of the vertex degree function for a simple graph. (Contributed by AV, 12-Dec-2020)

Ref Expression
Hypotheses vtxdushgrfvedg.v V = Vtx G
vtxdushgrfvedg.e E = Edg G
vtxdushgrfvedg.d D = VtxDeg G
Assertion vtxdusgrfvedg G USGraph U V D U = e E | U e

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V = Vtx G
2 vtxdushgrfvedg.e E = Edg G
3 vtxdushgrfvedg.d D = VtxDeg G
4 eqid iEdg G = iEdg G
5 eqid dom iEdg G = dom iEdg G
6 1 4 5 3 vtxdusgrval G USGraph U V D U = i dom iEdg G | U iEdg G i
7 usgruspgr G USGraph G USHGraph
8 uspgrushgr G USHGraph G USHGraph
9 7 8 syl G USGraph G USHGraph
10 1 2 vtxdushgrfvedglem G USHGraph U V i dom iEdg G | U iEdg G i = e E | U e
11 9 10 sylan G USGraph U V i dom iEdg G | U iEdg G i = e E | U e
12 6 11 eqtrd G USGraph U V D U = e E | U e