Metamath Proof Explorer


Theorem vtxdusgrval

Description: The value of the vertex degree function for a simple graph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypotheses vtxdlfgrval.v V = Vtx G
vtxdlfgrval.i I = iEdg G
vtxdlfgrval.a A = dom I
vtxdlfgrval.d D = VtxDeg G
Assertion vtxdusgrval G USGraph U V D U = x A | U I x

Proof

Step Hyp Ref Expression
1 vtxdlfgrval.v V = Vtx G
2 vtxdlfgrval.i I = iEdg G
3 vtxdlfgrval.a A = dom I
4 vtxdlfgrval.d D = VtxDeg G
5 usgrumgr G USGraph G UMGraph
6 1 2 3 4 vtxdumgrval G UMGraph U V D U = x A | U I x
7 5 6 sylan G USGraph U V D U = x A | U I x