Metamath Proof Explorer


Theorem vtxdushgrfvedglem

Description: Lemma for vtxdushgrfvedg and vtxdusgrfvedg . (Contributed by AV, 12-Dec-2020) (Proof shortened by AV, 5-May-2021)

Ref Expression
Hypotheses vtxdushgrfvedg.v V = Vtx G
vtxdushgrfvedg.e E = Edg G
Assertion vtxdushgrfvedglem G USHGraph U V i dom iEdg G | U iEdg G i = e E | U e

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V = Vtx G
2 vtxdushgrfvedg.e E = Edg G
3 fvex iEdg G V
4 3 dmex dom iEdg G V
5 4 rabex i dom iEdg G | U iEdg G i V
6 5 a1i G USHGraph U V i dom iEdg G | U iEdg G i V
7 eqid iEdg G = iEdg G
8 eqid i dom iEdg G | U iEdg G i = i dom iEdg G | U iEdg G i
9 eleq2w e = c U e U c
10 9 cbvrabv e E | U e = c E | U c
11 eqid x i dom iEdg G | U iEdg G i iEdg G x = x i dom iEdg G | U iEdg G i iEdg G x
12 2 7 1 8 10 11 ushgredgedg G USHGraph U V x i dom iEdg G | U iEdg G i iEdg G x : i dom iEdg G | U iEdg G i 1-1 onto e E | U e
13 6 12 hasheqf1od G USHGraph U V i dom iEdg G | U iEdg G i = e E | U e