Step |
Hyp |
Ref |
Expression |
1 |
|
wallispi2.1 |
|
2 |
|
eqid |
|
3 |
|
1cnd |
|
4 |
|
2cnd |
|
5 |
|
nncn |
|
6 |
4 5
|
mulcld |
|
7 |
6 3
|
addcld |
|
8 |
|
elnnuz |
|
9 |
8
|
biimpi |
|
10 |
|
eqidd |
|
11 |
|
simpr |
|
12 |
11
|
oveq2d |
|
13 |
12
|
oveq1d |
|
14 |
12
|
oveq1d |
|
15 |
12 14
|
oveq12d |
|
16 |
15
|
oveq1d |
|
17 |
13 16
|
oveq12d |
|
18 |
|
elfznn |
|
19 |
|
2cnd |
|
20 |
18
|
nncnd |
|
21 |
19 20
|
mulcld |
|
22 |
|
4nn0 |
|
23 |
22
|
a1i |
|
24 |
21 23
|
expcld |
|
25 |
|
1cnd |
|
26 |
21 25
|
subcld |
|
27 |
21 26
|
mulcld |
|
28 |
27
|
sqcld |
|
29 |
|
2ne0 |
|
30 |
29
|
a1i |
|
31 |
18
|
nnne0d |
|
32 |
19 20 30 31
|
mulne0d |
|
33 |
|
1red |
|
34 |
|
2re |
|
35 |
34
|
a1i |
|
36 |
35 33
|
remulcld |
|
37 |
18
|
nnred |
|
38 |
35 37
|
remulcld |
|
39 |
|
1lt2 |
|
40 |
39
|
a1i |
|
41 |
|
2t1e2 |
|
42 |
40 41
|
breqtrrdi |
|
43 |
|
0le2 |
|
44 |
43
|
a1i |
|
45 |
|
elfzle1 |
|
46 |
33 37 35 44 45
|
lemul2ad |
|
47 |
33 36 38 42 46
|
ltletrd |
|
48 |
33 47
|
gtned |
|
49 |
21 25 48
|
subne0d |
|
50 |
21 26 32 49
|
mulne0d |
|
51 |
|
2z |
|
52 |
51
|
a1i |
|
53 |
27 50 52
|
expne0d |
|
54 |
24 28 53
|
divcld |
|
55 |
10 17 18 54
|
fvmptd |
|
56 |
55 54
|
eqeltrd |
|
57 |
56
|
adantl |
|
58 |
|
mulcl |
|
59 |
58
|
adantl |
|
60 |
9 57 59
|
seqcl |
|
61 |
|
2nn |
|
62 |
61
|
a1i |
|
63 |
|
id |
|
64 |
62 63
|
nnmulcld |
|
65 |
64
|
peano2nnd |
|
66 |
65
|
nnne0d |
|
67 |
3 7 60 66
|
div32d |
|
68 |
60 7 66
|
divcld |
|
69 |
68
|
mulid2d |
|
70 |
|
wallispi2lem2 |
|
71 |
70
|
oveq1d |
|
72 |
67 69 71
|
3eqtrd |
|
73 |
72
|
mpteq2ia |
|
74 |
|
wallispi2lem1 |
|
75 |
74
|
mpteq2ia |
|
76 |
73 75 1
|
3eqtr4ri |
|
77 |
2 76
|
wallispi |
|