| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wallispilem1.1 |
|
| 2 |
|
wallispilem1.2 |
|
| 3 |
|
0re |
|
| 4 |
3
|
a1i |
|
| 5 |
|
pire |
|
| 6 |
5
|
a1i |
|
| 7 |
|
peano2nn0 |
|
| 8 |
2 7
|
syl |
|
| 9 |
|
iblioosinexp |
|
| 10 |
4 6 8 9
|
syl3anc |
|
| 11 |
|
iblioosinexp |
|
| 12 |
4 6 2 11
|
syl3anc |
|
| 13 |
|
elioore |
|
| 14 |
13
|
resincld |
|
| 15 |
14
|
adantl |
|
| 16 |
8
|
adantr |
|
| 17 |
15 16
|
reexpcld |
|
| 18 |
2
|
adantr |
|
| 19 |
15 18
|
reexpcld |
|
| 20 |
2
|
nn0zd |
|
| 21 |
|
uzid |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
peano2uz |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
adantr |
|
| 26 |
14 3
|
jctil |
|
| 27 |
|
sinq12gt0 |
|
| 28 |
|
ltle |
|
| 29 |
26 27 28
|
sylc |
|
| 30 |
29
|
adantl |
|
| 31 |
|
sinbnd |
|
| 32 |
13 31
|
syl |
|
| 33 |
32
|
simprd |
|
| 34 |
33
|
adantl |
|
| 35 |
15 18 25 30 34
|
leexp2rd |
|
| 36 |
10 12 17 19 35
|
itgle |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
itgeq2dv |
|
| 40 |
|
itgex |
|
| 41 |
39 1 40
|
fvmpt |
|
| 42 |
8 41
|
syl |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
adantr |
|
| 45 |
44
|
itgeq2dv |
|
| 46 |
|
itgex |
|
| 47 |
45 1 46
|
fvmpt |
|
| 48 |
2 47
|
syl |
|
| 49 |
36 42 48
|
3brtr4d |
|