Step |
Hyp |
Ref |
Expression |
1 |
|
wallispilem1.1 |
|
2 |
|
wallispilem1.2 |
|
3 |
|
0re |
|
4 |
3
|
a1i |
|
5 |
|
pire |
|
6 |
5
|
a1i |
|
7 |
|
peano2nn0 |
|
8 |
2 7
|
syl |
|
9 |
|
iblioosinexp |
|
10 |
4 6 8 9
|
syl3anc |
|
11 |
|
iblioosinexp |
|
12 |
4 6 2 11
|
syl3anc |
|
13 |
|
elioore |
|
14 |
13
|
resincld |
|
15 |
14
|
adantl |
|
16 |
8
|
adantr |
|
17 |
15 16
|
reexpcld |
|
18 |
2
|
adantr |
|
19 |
15 18
|
reexpcld |
|
20 |
2
|
nn0zd |
|
21 |
|
uzid |
|
22 |
20 21
|
syl |
|
23 |
|
peano2uz |
|
24 |
22 23
|
syl |
|
25 |
24
|
adantr |
|
26 |
14 3
|
jctil |
|
27 |
|
sinq12gt0 |
|
28 |
|
ltle |
|
29 |
26 27 28
|
sylc |
|
30 |
29
|
adantl |
|
31 |
|
sinbnd |
|
32 |
13 31
|
syl |
|
33 |
32
|
simprd |
|
34 |
33
|
adantl |
|
35 |
15 18 25 30 34
|
leexp2rd |
|
36 |
10 12 17 19 35
|
itgle |
|
37 |
|
oveq2 |
|
38 |
37
|
adantr |
|
39 |
38
|
itgeq2dv |
|
40 |
|
itgex |
|
41 |
39 1 40
|
fvmpt |
|
42 |
8 41
|
syl |
|
43 |
|
oveq2 |
|
44 |
43
|
adantr |
|
45 |
44
|
itgeq2dv |
|
46 |
|
itgex |
|
47 |
45 1 46
|
fvmpt |
|
48 |
2 47
|
syl |
|
49 |
36 42 48
|
3brtr4d |
|