Metamath Proof Explorer


Theorem wallispilem5

Description: The sequence H converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017)

Ref Expression
Hypotheses wallispilem5.1 F = k 2 k 2 k 1 2 k 2 k + 1
wallispilem5.2 I = n 0 0 π sin x n dx
wallispilem5.3 G = n I 2 n I 2 n + 1
wallispilem5.4 H = n π 2 1 seq 1 × F n
wallispilem5.5 L = n 2 n + 1 2 n
Assertion wallispilem5 H 1

Proof

Step Hyp Ref Expression
1 wallispilem5.1 F = k 2 k 2 k 1 2 k 2 k + 1
2 wallispilem5.2 I = n 0 0 π sin x n dx
3 wallispilem5.3 G = n I 2 n I 2 n + 1
4 wallispilem5.4 H = n π 2 1 seq 1 × F n
5 wallispilem5.5 L = n 2 n + 1 2 n
6 1 2 3 4 wallispilem4 G = H
7 nnuz = 1
8 1zzd 1
9 2cnd 2
10 2ne0 2 0
11 10 a1i 2 0
12 1cnd 1
13 5 9 11 12 clim1fr1 L 1
14 nnex V
15 14 mptex n I 2 n I 2 n + 1 V
16 3 15 eqeltri G V
17 16 a1i G V
18 2nn0 2 0
19 18 a1i n 2 0
20 nnnn0 n n 0
21 19 20 nn0mulcld n 2 n 0
22 1nn0 1 0
23 22 a1i n 1 0
24 21 23 nn0addcld n 2 n + 1 0
25 24 nn0red n 2 n + 1
26 21 nn0red n 2 n
27 2cnd n 2
28 nncn n n
29 10 a1i n 2 0
30 nnne0 n n 0
31 27 28 29 30 mulne0d n 2 n 0
32 25 26 31 redivcld n 2 n + 1 2 n
33 5 32 fmpti L :
34 33 a1i L :
35 34 ffvelrnda k L k
36 2 wallispilem3 2 n 0 I 2 n +
37 21 36 syl n I 2 n +
38 37 rpred n I 2 n
39 2 wallispilem3 2 n + 1 0 I 2 n + 1 +
40 24 39 syl n I 2 n + 1 +
41 38 40 rerpdivcld n I 2 n I 2 n + 1
42 3 41 fmpti G :
43 42 a1i G :
44 43 ffvelrnda k G k
45 18 a1i k 2 0
46 nnnn0 k k 0
47 45 46 nn0mulcld k 2 k 0
48 2 wallispilem3 2 k 0 I 2 k +
49 47 48 syl k I 2 k +
50 49 rpred k I 2 k
51 2nn 2
52 51 a1i k 2
53 id k k
54 52 53 nnmulcld k 2 k
55 nnm1nn0 2 k 2 k 1 0
56 54 55 syl k 2 k 1 0
57 2 wallispilem3 2 k 1 0 I 2 k 1 +
58 56 57 syl k I 2 k 1 +
59 58 rpred k I 2 k 1
60 22 a1i k 1 0
61 47 60 nn0addcld k 2 k + 1 0
62 2 wallispilem3 2 k + 1 0 I 2 k + 1 +
63 61 62 syl k I 2 k + 1 +
64 2cnd k 2
65 nncn k k
66 64 65 mulcld k 2 k
67 1cnd k 1
68 66 67 npcand k 2 k - 1 + 1 = 2 k
69 68 fveq2d k I 2 k - 1 + 1 = I 2 k
70 2 56 wallispilem1 k I 2 k - 1 + 1 I 2 k 1
71 69 70 eqbrtrrd k I 2 k I 2 k 1
72 50 59 63 71 lediv1dd k I 2 k I 2 k + 1 I 2 k 1 I 2 k + 1
73 66 67 addcld k 2 k + 1
74 10 a1i k 2 0
75 nnne0 k k 0
76 64 65 74 75 mulne0d k 2 k 0
77 73 66 76 divcld k 2 k + 1 2 k
78 63 rpcnd k I 2 k + 1
79 63 rpne0d k I 2 k + 1 0
80 77 78 79 divcan4d k 2 k + 1 2 k I 2 k + 1 I 2 k + 1 = 2 k + 1 2 k
81 2re 2
82 81 a1i k 2
83 nnre k k
84 82 83 remulcld k 2 k
85 1red k 1
86 84 85 readdcld k 2 k + 1
87 45 nn0ge0d k 0 2
88 nnge1 k 1 k
89 82 83 87 88 lemulge11d k 2 2 k
90 84 ltp1d k 2 k < 2 k + 1
91 82 84 86 89 90 lelttrd k 2 < 2 k + 1
92 82 86 91 ltled k 2 2 k + 1
93 45 nn0zd k 2
94 61 nn0zd k 2 k + 1
95 eluz 2 2 k + 1 2 k + 1 2 2 2 k + 1
96 93 94 95 syl2anc k 2 k + 1 2 2 2 k + 1
97 92 96 mpbird k 2 k + 1 2
98 2 97 itgsinexp k I 2 k + 1 = 2 k + 1 - 1 2 k + 1 I 2 k + 1 - 2
99 66 67 pncand k 2 k + 1 - 1 = 2 k
100 99 oveq1d k 2 k + 1 - 1 2 k + 1 = 2 k 2 k + 1
101 1e2m1 1 = 2 1
102 101 a1i k 1 = 2 1
103 102 oveq2d k 2 k 1 = 2 k 2 1
104 66 64 67 subsub3d k 2 k 2 1 = 2 k + 1 - 2
105 103 104 eqtr2d k 2 k + 1 - 2 = 2 k 1
106 105 fveq2d k I 2 k + 1 - 2 = I 2 k 1
107 100 106 oveq12d k 2 k + 1 - 1 2 k + 1 I 2 k + 1 - 2 = 2 k 2 k + 1 I 2 k 1
108 98 107 eqtrd k I 2 k + 1 = 2 k 2 k + 1 I 2 k 1
109 108 oveq2d k 2 k + 1 2 k I 2 k + 1 = 2 k + 1 2 k 2 k 2 k + 1 I 2 k 1
110 54 peano2nnd k 2 k + 1
111 110 nnne0d k 2 k + 1 0
112 66 73 111 divcld k 2 k 2 k + 1
113 58 rpcnd k I 2 k 1
114 77 112 113 mulassd k 2 k + 1 2 k 2 k 2 k + 1 I 2 k 1 = 2 k + 1 2 k 2 k 2 k + 1 I 2 k 1
115 73 66 111 76 divcan6d k 2 k + 1 2 k 2 k 2 k + 1 = 1
116 115 oveq1d k 2 k + 1 2 k 2 k 2 k + 1 I 2 k 1 = 1 I 2 k 1
117 113 mulid2d k 1 I 2 k 1 = I 2 k 1
118 116 117 eqtrd k 2 k + 1 2 k 2 k 2 k + 1 I 2 k 1 = I 2 k 1
119 109 114 118 3eqtr2d k 2 k + 1 2 k I 2 k + 1 = I 2 k 1
120 119 oveq1d k 2 k + 1 2 k I 2 k + 1 I 2 k + 1 = I 2 k 1 I 2 k + 1
121 80 120 eqtr3d k 2 k + 1 2 k = I 2 k 1 I 2 k + 1
122 72 121 breqtrrd k I 2 k I 2 k + 1 2 k + 1 2 k
123 49 63 rpdivcld k I 2 k I 2 k + 1 +
124 nfcv _ n k
125 nfmpt1 _ n n 0 0 π sin x n dx
126 2 125 nfcxfr _ n I
127 nfcv _ n 2 k
128 126 127 nffv _ n I 2 k
129 nfcv _ n ÷
130 nfcv _ n 2 k + 1
131 126 130 nffv _ n I 2 k + 1
132 128 129 131 nfov _ n I 2 k I 2 k + 1
133 oveq2 n = k 2 n = 2 k
134 133 fveq2d n = k I 2 n = I 2 k
135 133 fvoveq1d n = k I 2 n + 1 = I 2 k + 1
136 134 135 oveq12d n = k I 2 n I 2 n + 1 = I 2 k I 2 k + 1
137 124 132 136 3 fvmptf k I 2 k I 2 k + 1 + G k = I 2 k I 2 k + 1
138 123 137 mpdan k G k = I 2 k I 2 k + 1
139 5 a1i k L = n 2 n + 1 2 n
140 simpr k n = k n = k
141 140 oveq2d k n = k 2 n = 2 k
142 141 oveq1d k n = k 2 n + 1 = 2 k + 1
143 142 141 oveq12d k n = k 2 n + 1 2 n = 2 k + 1 2 k
144 139 143 53 77 fvmptd k L k = 2 k + 1 2 k
145 122 138 144 3brtr4d k G k L k
146 145 adantl k G k L k
147 78 79 dividd k I 2 k + 1 I 2 k + 1 = 1
148 63 rpred k I 2 k + 1
149 2 47 wallispilem1 k I 2 k + 1 I 2 k
150 148 50 63 149 lediv1dd k I 2 k + 1 I 2 k + 1 I 2 k I 2 k + 1
151 147 150 eqbrtrrd k 1 I 2 k I 2 k + 1
152 151 138 breqtrrd k 1 G k
153 152 adantl k 1 G k
154 7 8 13 17 35 44 146 153 climsqz2 G 1
155 154 mptru G 1
156 6 155 eqbrtrri H 1