Step |
Hyp |
Ref |
Expression |
1 |
|
wdom2d.a |
|
2 |
|
wdom2d.b |
|
3 |
|
wdom2d.o |
|
4 |
|
rabexg |
|
5 |
2 4
|
syl |
|
6 |
5 1
|
xpexd |
|
7 |
|
csbeq1 |
|
8 |
7
|
eleq1d |
|
9 |
8
|
elrab |
|
10 |
9
|
simprbi |
|
11 |
10
|
adantl |
|
12 |
11
|
fmpttd |
|
13 |
|
fssxp |
|
14 |
12 13
|
syl |
|
15 |
6 14
|
ssexd |
|
16 |
|
eleq1 |
|
17 |
16
|
biimpcd |
|
18 |
17
|
ancrd |
|
19 |
18
|
adantl |
|
20 |
19
|
reximdv |
|
21 |
3 20
|
mpd |
|
22 |
|
nfv |
|
23 |
|
nfcsb1v |
|
24 |
23
|
nfel1 |
|
25 |
23
|
nfeq2 |
|
26 |
24 25
|
nfan |
|
27 |
|
csbeq1a |
|
28 |
27
|
eleq1d |
|
29 |
27
|
eqeq2d |
|
30 |
28 29
|
anbi12d |
|
31 |
22 26 30
|
cbvrexw |
|
32 |
21 31
|
sylib |
|
33 |
|
csbeq1 |
|
34 |
33
|
eleq1d |
|
35 |
34
|
elrab |
|
36 |
35
|
simprbi |
|
37 |
|
csbeq1 |
|
38 |
|
eqid |
|
39 |
37 38
|
fvmptg |
|
40 |
36 39
|
mpdan |
|
41 |
40
|
eqeq2d |
|
42 |
41
|
rexbiia |
|
43 |
34
|
rexrab |
|
44 |
42 43
|
bitri |
|
45 |
32 44
|
sylibr |
|
46 |
45
|
ralrimiva |
|
47 |
|
dffo3 |
|
48 |
12 46 47
|
sylanbrc |
|
49 |
|
fowdom |
|
50 |
15 48 49
|
syl2anc |
|
51 |
|
ssrab2 |
|
52 |
|
ssdomg |
|
53 |
51 52
|
mpi |
|
54 |
|
domwdom |
|
55 |
2 53 54
|
3syl |
|
56 |
|
wdomtr |
|
57 |
50 55 56
|
syl2anc |
|