Metamath Proof Explorer


Theorem wdomac

Description: When assuming AC, weak and usual dominance coincide. It is not known if this is an AC equivalent. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion wdomac X * Y X Y

Proof

Step Hyp Ref Expression
1 relwdom Rel *
2 1 brrelex2i X * Y Y V
3 reldom Rel
4 3 brrelex2i X Y Y V
5 numth3 Y V Y dom card
6 wdomnumr Y dom card X * Y X Y
7 5 6 syl Y V X * Y X Y
8 2 4 7 pm5.21nii X * Y X Y