Metamath Proof Explorer


Theorem wdomd

Description: Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015)

Ref Expression
Hypotheses wdomd.b φ B W
wdomd.o φ x A y B x = X
Assertion wdomd φ A * B

Proof

Step Hyp Ref Expression
1 wdomd.b φ B W
2 wdomd.o φ x A y B x = X
3 abrexexg B W x | y B x = X V
4 1 3 syl φ x | y B x = X V
5 2 ex φ x A y B x = X
6 5 alrimiv φ x x A y B x = X
7 ssab A x | y B x = X x x A y B x = X
8 6 7 sylibr φ A x | y B x = X
9 4 8 ssexd φ A V
10 9 1 2 wdom2d φ A * B