Metamath Proof Explorer


Theorem wdomen1

Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion wdomen1 A B A * C B * C

Proof

Step Hyp Ref Expression
1 ensym A B B A
2 endom B A B A
3 domwdom B A B * A
4 1 2 3 3syl A B B * A
5 wdomtr B * A A * C B * C
6 4 5 sylan A B A * C B * C
7 endom A B A B
8 domwdom A B A * B
9 7 8 syl A B A * B
10 wdomtr A * B B * C A * C
11 9 10 sylan A B B * C A * C
12 6 11 impbida A B A * C B * C