Metamath Proof Explorer


Theorem wdomen2

Description: Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion wdomen2 A B C * A C * B

Proof

Step Hyp Ref Expression
1 id C * A C * A
2 endom A B A B
3 domwdom A B A * B
4 2 3 syl A B A * B
5 wdomtr C * A A * B C * B
6 1 4 5 syl2anr A B C * A C * B
7 id C * B C * B
8 ensym A B B A
9 endom B A B A
10 domwdom B A B * A
11 8 9 10 3syl A B B * A
12 wdomtr C * B B * A C * A
13 7 11 12 syl2anr A B C * B C * A
14 6 13 impbida A B C * A C * B