Metamath Proof Explorer


Theorem wdomima2g

Description: A set is weakly dominant over its image under any function. This version of wdomimag is stated so as to avoid ax-rep . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion wdomima2g Fun F A V F A W F A * A

Proof

Step Hyp Ref Expression
1 df-ima F A = ran F A
2 funres Fun F Fun F A
3 funforn Fun F A F A : dom F A onto ran F A
4 2 3 sylib Fun F F A : dom F A onto ran F A
5 4 3ad2ant1 Fun F A V F A W F A : dom F A onto ran F A
6 fof F A : dom F A onto ran F A F A : dom F A ran F A
7 5 6 syl Fun F A V F A W F A : dom F A ran F A
8 dmres dom F A = A dom F
9 inss1 A dom F A
10 8 9 eqsstri dom F A A
11 simp2 Fun F A V F A W A V
12 ssexg dom F A A A V dom F A V
13 10 11 12 sylancr Fun F A V F A W dom F A V
14 simp3 Fun F A V F A W F A W
15 1 14 eqeltrrid Fun F A V F A W ran F A W
16 fex2 F A : dom F A ran F A dom F A V ran F A W F A V
17 7 13 15 16 syl3anc Fun F A V F A W F A V
18 fowdom F A V F A : dom F A onto ran F A ran F A * dom F A
19 17 5 18 syl2anc Fun F A V F A W ran F A * dom F A
20 ssdomg A V dom F A A dom F A A
21 10 20 mpi A V dom F A A
22 domwdom dom F A A dom F A * A
23 21 22 syl A V dom F A * A
24 23 3ad2ant2 Fun F A V F A W dom F A * A
25 wdomtr ran F A * dom F A dom F A * A ran F A * A
26 19 24 25 syl2anc Fun F A V F A W ran F A * A
27 1 26 eqbrtrid Fun F A V F A W F A * A