Metamath Proof Explorer


Theorem wdomref

Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion wdomref X V X * X

Proof

Step Hyp Ref Expression
1 resiexg X V I X V
2 f1oi I X : X 1-1 onto X
3 f1ofo I X : X 1-1 onto X I X : X onto X
4 2 3 ax-mp I X : X onto X
5 fowdom I X V I X : X onto X X * X
6 1 4 5 sylancl X V X * X