Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Weak dominance
wdomref
Next ⟩
brwdom2
Metamath Proof Explorer
Ascii
Unicode
Theorem
wdomref
Description:
Reflexivity of weak dominance.
(Contributed by
Stefan O'Rear
, 11-Feb-2015)
Ref
Expression
Assertion
wdomref
⊢
X
∈
V
→
X
≼
*
X
Proof
Step
Hyp
Ref
Expression
1
resiexg
⊢
X
∈
V
→
I
↾
X
∈
V
2
f1oi
⊢
I
↾
X
:
X
⟶
1-1 onto
X
3
f1ofo
⊢
I
↾
X
:
X
⟶
1-1 onto
X
→
I
↾
X
:
X
⟶
onto
X
4
2
3
ax-mp
⊢
I
↾
X
:
X
⟶
onto
X
5
fowdom
⊢
I
↾
X
∈
V
∧
I
↾
X
:
X
⟶
onto
X
→
X
≼
*
X
6
1
4
5
sylancl
⊢
X
∈
V
→
X
≼
*
X