Metamath Proof Explorer


Theorem wecmpep

Description: The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994)

Ref Expression
Assertion wecmpep E We A x A y A x y x = y y x

Proof

Step Hyp Ref Expression
1 weso E We A E Or A
2 solin E Or A x A y A x E y x = y y E x
3 epel x E y x y
4 biid x = y x = y
5 epel y E x y x
6 3 4 5 3orbi123i x E y x = y y E x x y x = y y x
7 2 6 sylib E Or A x A y A x y x = y y x
8 1 7 sylan E We A x A y A x y x = y y x