Metamath Proof Explorer


Theorem ween

Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion ween A dom card r r We A

Proof

Step Hyp Ref Expression
1 dfac8b A dom card r r We A
2 weso r We A r Or A
3 vex r V
4 soex r Or A r V A V
5 2 3 4 sylancl r We A A V
6 5 exlimiv r r We A A V
7 unipw 𝒫 A = A
8 weeq2 𝒫 A = A r We 𝒫 A r We A
9 7 8 ax-mp r We 𝒫 A r We A
10 9 exbii r r We 𝒫 A r r We A
11 10 biimpri r r We A r r We 𝒫 A
12 pwexg A V 𝒫 A V
13 dfac8c 𝒫 A V r r We 𝒫 A f x 𝒫 A x f x x
14 12 13 syl A V r r We 𝒫 A f x 𝒫 A x f x x
15 dfac8a A V f x 𝒫 A x f x x A dom card
16 14 15 syld A V r r We 𝒫 A A dom card
17 6 11 16 sylc r r We A A dom card
18 1 17 impbii A dom card r r We A