Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
weeq1
Next ⟩
weeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
weeq1
Description:
Equality theorem for the well-ordering predicate.
(Contributed by
NM
, 9-Mar-1997)
Ref
Expression
Assertion
weeq1
⊢
R
=
S
→
R
We
A
↔
S
We
A
Proof
Step
Hyp
Ref
Expression
1
freq1
⊢
R
=
S
→
R
Fr
A
↔
S
Fr
A
2
soeq1
⊢
R
=
S
→
R
Or
A
↔
S
Or
A
3
1
2
anbi12d
⊢
R
=
S
→
R
Fr
A
∧
R
Or
A
↔
S
Fr
A
∧
S
Or
A
4
df-we
⊢
R
We
A
↔
R
Fr
A
∧
R
Or
A
5
df-we
⊢
S
We
A
↔
S
Fr
A
∧
S
Or
A
6
3
4
5
3bitr4g
⊢
R
=
S
→
R
We
A
↔
S
We
A