Metamath Proof Explorer


Theorem weeq12d

Description: Equality deduction for well-orderings. (Contributed by Stefan O'Rear, 19-Jan-2015) (Proof shortened by Matthew House, 10-Sep-2025)

Ref Expression
Hypotheses weeq12d.1 φ R = S
weeq12d.2 φ A = B
Assertion weeq12d φ R We A S We B

Proof

Step Hyp Ref Expression
1 weeq12d.1 φ R = S
2 weeq12d.2 φ A = B
3 weeq1 R = S R We A S We A
4 weeq2 A = B S We A S We B
5 3 4 sylan9bb R = S A = B R We A S We B
6 1 2 5 syl2anc φ R We A S We B