Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
weeq2
Next ⟩
wefr
Metamath Proof Explorer
Ascii
Unicode
Theorem
weeq2
Description:
Equality theorem for the well-ordering predicate.
(Contributed by
NM
, 3-Apr-1994)
Ref
Expression
Assertion
weeq2
⊢
A
=
B
→
R
We
A
↔
R
We
B
Proof
Step
Hyp
Ref
Expression
1
freq2
⊢
A
=
B
→
R
Fr
A
↔
R
Fr
B
2
soeq2
⊢
A
=
B
→
R
Or
A
↔
R
Or
B
3
1
2
anbi12d
⊢
A
=
B
→
R
Fr
A
∧
R
Or
A
↔
R
Fr
B
∧
R
Or
B
4
df-we
⊢
R
We
A
↔
R
Fr
A
∧
R
Or
A
5
df-we
⊢
R
We
B
↔
R
Fr
B
∧
R
Or
B
6
3
4
5
3bitr4g
⊢
A
=
B
→
R
We
A
↔
R
We
B