Metamath Proof Explorer


Theorem weisoeq2

Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion weisoeq2 S We B S Se B F Isom R , S A B G Isom R , S A B F = G

Proof

Step Hyp Ref Expression
1 isocnv F Isom R , S A B F -1 Isom S , R B A
2 isocnv G Isom R , S A B G -1 Isom S , R B A
3 1 2 anim12i F Isom R , S A B G Isom R , S A B F -1 Isom S , R B A G -1 Isom S , R B A
4 weisoeq S We B S Se B F -1 Isom S , R B A G -1 Isom S , R B A F -1 = G -1
5 3 4 sylan2 S We B S Se B F Isom R , S A B G Isom R , S A B F -1 = G -1
6 simprl S We B S Se B F Isom R , S A B G Isom R , S A B F Isom R , S A B
7 isof1o F Isom R , S A B F : A 1-1 onto B
8 f1orel F : A 1-1 onto B Rel F
9 6 7 8 3syl S We B S Se B F Isom R , S A B G Isom R , S A B Rel F
10 simprr S We B S Se B F Isom R , S A B G Isom R , S A B G Isom R , S A B
11 isof1o G Isom R , S A B G : A 1-1 onto B
12 f1orel G : A 1-1 onto B Rel G
13 10 11 12 3syl S We B S Se B F Isom R , S A B G Isom R , S A B Rel G
14 cnveqb Rel F Rel G F = G F -1 = G -1
15 9 13 14 syl2anc S We B S Se B F Isom R , S A B G Isom R , S A B F = G F -1 = G -1
16 5 15 mpbird S We B S Se B F Isom R , S A B G Isom R , S A B F = G