Metamath Proof Explorer


Theorem wemapso

Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015) (Revised by Mario Carneiro, 8-Feb-2015) (Revised by AV, 21-Jul-2024)

Ref Expression
Hypothesis wemapso.t T = x y | z A x z S y z w A w R z x w = y w
Assertion wemapso R We A S Or B T Or B A

Proof

Step Hyp Ref Expression
1 wemapso.t T = x y | z A x z S y z w A w R z x w = y w
2 ssid B A B A
3 weso R We A R Or A
4 3 adantr R We A S Or B R Or A
5 simpr R We A S Or B S Or B
6 vex a V
7 6 difexi a b V
8 7 dmex dom a b V
9 8 a1i R We A S Or B a B A b B A a b dom a b V
10 wefr R We A R Fr A
11 10 ad2antrr R We A S Or B a B A b B A a b R Fr A
12 difss a b a
13 dmss a b a dom a b dom a
14 12 13 ax-mp dom a b dom a
15 simprll R We A S Or B a B A b B A a b a B A
16 elmapi a B A a : A B
17 15 16 syl R We A S Or B a B A b B A a b a : A B
18 14 17 fssdm R We A S Or B a B A b B A a b dom a b A
19 simprr R We A S Or B a B A b B A a b a b
20 17 ffnd R We A S Or B a B A b B A a b a Fn A
21 simprlr R We A S Or B a B A b B A a b b B A
22 elmapi b B A b : A B
23 21 22 syl R We A S Or B a B A b B A a b b : A B
24 23 ffnd R We A S Or B a B A b B A a b b Fn A
25 fndmdifeq0 a Fn A b Fn A dom a b = a = b
26 20 24 25 syl2anc R We A S Or B a B A b B A a b dom a b = a = b
27 26 necon3bid R We A S Or B a B A b B A a b dom a b a b
28 19 27 mpbird R We A S Or B a B A b B A a b dom a b
29 fri dom a b V R Fr A dom a b A dom a b c dom a b d dom a b ¬ d R c
30 9 11 18 28 29 syl22anc R We A S Or B a B A b B A a b c dom a b d dom a b ¬ d R c
31 1 2 4 5 30 wemapsolem R We A S Or B T Or B A