Metamath Proof Explorer


Theorem wemapso2

Description: An alternative to having a well-order on R in wemapso is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by AV, 1-Jul-2019)

Ref Expression
Hypotheses wemapso.t T=xy|zAxzSyzwAwRzxw=yw
wemapso2.u U=xBA|finSuppZx
Assertion wemapso2 AVROrASOrBTOrU

Proof

Step Hyp Ref Expression
1 wemapso.t T=xy|zAxzSyzwAwRzxw=yw
2 wemapso2.u U=xBA|finSuppZx
3 1 2 wemapso2lem AVROrASOrBZVTOrU
4 3 expcom ZVAVROrASOrBTOrU
5 so0 TOr
6 relfsupp RelfinSupp
7 6 brrelex2i finSuppZxZV
8 7 con3i ¬ZV¬finSuppZx
9 8 ralrimivw ¬ZVxBA¬finSuppZx
10 rabeq0 xBA|finSuppZx=xBA¬finSuppZx
11 9 10 sylibr ¬ZVxBA|finSuppZx=
12 2 11 eqtrid ¬ZVU=
13 soeq2 U=TOrUTOr
14 12 13 syl ¬ZVTOrUTOr
15 5 14 mpbiri ¬ZVTOrU
16 15 a1d ¬ZVAVROrASOrBTOrU
17 4 16 pm2.61i AVROrASOrBTOrU