Metamath Proof Explorer


Theorem wemoiso2

Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion wemoiso2 S We B * f f Isom R , S A B

Proof

Step Hyp Ref Expression
1 simpl S We B f Isom R , S A B g Isom R , S A B S We B
2 isof1o f Isom R , S A B f : A 1-1 onto B
3 f1ofo f : A 1-1 onto B f : A onto B
4 forn f : A onto B ran f = B
5 2 3 4 3syl f Isom R , S A B ran f = B
6 vex f V
7 6 rnex ran f V
8 5 7 eqeltrrdi f Isom R , S A B B V
9 8 ad2antrl S We B f Isom R , S A B g Isom R , S A B B V
10 exse B V S Se B
11 9 10 syl S We B f Isom R , S A B g Isom R , S A B S Se B
12 1 11 jca S We B f Isom R , S A B g Isom R , S A B S We B S Se B
13 weisoeq2 S We B S Se B f Isom R , S A B g Isom R , S A B f = g
14 12 13 sylancom S We B f Isom R , S A B g Isom R , S A B f = g
15 14 ex S We B f Isom R , S A B g Isom R , S A B f = g
16 15 alrimivv S We B f g f Isom R , S A B g Isom R , S A B f = g
17 isoeq1 f = g f Isom R , S A B g Isom R , S A B
18 17 mo4 * f f Isom R , S A B f g f Isom R , S A B g Isom R , S A B f = g
19 16 18 sylibr S We B * f f Isom R , S A B