Metamath Proof Explorer


Theorem wesn

Description: Well-ordering of a singleton. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion wesn Rel R R We A ¬ A R A

Proof

Step Hyp Ref Expression
1 frsn Rel R R Fr A ¬ A R A
2 sosn Rel R R Or A ¬ A R A
3 1 2 anbi12d Rel R R Fr A R Or A ¬ A R A ¬ A R A
4 df-we R We A R Fr A R Or A
5 pm4.24 ¬ A R A ¬ A R A ¬ A R A
6 3 4 5 3bitr4g Rel R R We A ¬ A R A