Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
wesn
Next ⟩
elopaelxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
wesn
Description:
Well-ordering of a singleton.
(Contributed by
Mario Carneiro
, 28-Dec-2014)
Ref
Expression
Assertion
wesn
⊢
Rel
⁡
R
→
R
We
A
↔
¬
A
R
A
Proof
Step
Hyp
Ref
Expression
1
frsn
⊢
Rel
⁡
R
→
R
Fr
A
↔
¬
A
R
A
2
sosn
⊢
Rel
⁡
R
→
R
Or
A
↔
¬
A
R
A
3
1
2
anbi12d
⊢
Rel
⁡
R
→
R
Fr
A
∧
R
Or
A
↔
¬
A
R
A
∧
¬
A
R
A
4
df-we
⊢
R
We
A
↔
R
Fr
A
∧
R
Or
A
5
pm4.24
⊢
¬
A
R
A
↔
¬
A
R
A
∧
¬
A
R
A
6
3
4
5
3bitr4g
⊢
Rel
⁡
R
→
R
We
A
↔
¬
A
R
A