Metamath Proof Explorer


Theorem wetrep

Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994)

Ref Expression
Assertion wetrep E We A x A y A z A x y y z x z

Proof

Step Hyp Ref Expression
1 weso E We A E Or A
2 sotr E Or A x A y A z A x E y y E z x E z
3 1 2 sylan E We A x A y A z A x E y y E z x E z
4 epel x E y x y
5 epel y E z y z
6 4 5 anbi12i x E y y E z x y y z
7 epel x E z x z
8 3 6 7 3imtr3g E We A x A y A z A x y y z x z