Metamath Proof Explorer


Theorem wexp

Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)

Ref Expression
Hypothesis wexp.1 T = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y
Assertion wexp R We A S We B T We A × B

Proof

Step Hyp Ref Expression
1 wexp.1 T = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y
2 wefr R We A R Fr A
3 wefr S We B S Fr B
4 1 frxp R Fr A S Fr B T Fr A × B
5 2 3 4 syl2an R We A S We B T Fr A × B
6 weso R We A R Or A
7 weso S We B S Or B
8 1 soxp R Or A S Or B T Or A × B
9 6 7 8 syl2an R We A S We B T Or A × B
10 df-we T We A × B T Fr A × B T Or A × B
11 5 9 10 sylanbrc R We A S We B T We A × B