Metamath Proof Explorer


Theorem wfis2

Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis2.1 R We A
wfis2.2 R Se A
wfis2.3 y = z φ ψ
wfis2.4 y A z Pred R A y ψ φ
Assertion wfis2 y A φ

Proof

Step Hyp Ref Expression
1 wfis2.1 R We A
2 wfis2.2 R Se A
3 wfis2.3 y = z φ ψ
4 wfis2.4 y A z Pred R A y ψ φ
5 3 4 wfis2g R We A R Se A y A φ
6 1 2 5 mp2an y A φ
7 6 rspec y A φ