Metamath Proof Explorer


Theorem wfis2f

Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis2f.1 R We A
wfis2f.2 R Se A
wfis2f.3 y ψ
wfis2f.4 y = z φ ψ
wfis2f.5 y A z Pred R A y ψ φ
Assertion wfis2f y A φ

Proof

Step Hyp Ref Expression
1 wfis2f.1 R We A
2 wfis2f.2 R Se A
3 wfis2f.3 y ψ
4 wfis2f.4 y = z φ ψ
5 wfis2f.5 y A z Pred R A y ψ φ
6 3 4 5 wfis2fg R We A R Se A y A φ
7 1 2 6 mp2an y A φ
8 7 rspec y A φ