Metamath Proof Explorer
Description: Well-Ordered Induction schema, using implicit substitution.
(Contributed by Scott Fenton, 29-Jan-2011)
|
|
Ref |
Expression |
|
Hypotheses |
wfis2f.1 |
|
|
|
wfis2f.2 |
|
|
|
wfis2f.3 |
|
|
|
wfis2f.4 |
|
|
|
wfis2f.5 |
|
|
Assertion |
wfis2f |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
wfis2f.1 |
|
2 |
|
wfis2f.2 |
|
3 |
|
wfis2f.3 |
|
4 |
|
wfis2f.4 |
|
5 |
|
wfis2f.5 |
|
6 |
3 4 5
|
wfis2fg |
|
7 |
1 2 6
|
mp2an |
|
8 |
7
|
rspec |
|