Metamath Proof Explorer


Theorem wfis2g

Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Hypotheses wfis2g.1 y = z φ ψ
wfis2g.2 y A z Pred R A y ψ φ
Assertion wfis2g R We A R Se A y A φ

Proof

Step Hyp Ref Expression
1 wfis2g.1 y = z φ ψ
2 wfis2g.2 y A z Pred R A y ψ φ
3 nfv y ψ
4 3 1 2 wfis2fg R We A R Se A y A φ