Metamath Proof Explorer


Theorem wfis3

Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis3.1 R We A
wfis3.2 R Se A
wfis3.3 y = z φ ψ
wfis3.4 y = B φ χ
wfis3.5 y A z Pred R A y ψ φ
Assertion wfis3 B A χ

Proof

Step Hyp Ref Expression
1 wfis3.1 R We A
2 wfis3.2 R Se A
3 wfis3.3 y = z φ ψ
4 wfis3.4 y = B φ χ
5 wfis3.5 y A z Pred R A y ψ φ
6 1 2 3 5 wfis2 y A φ
7 4 6 vtoclga B A χ