Metamath Proof Explorer


Theorem wfr2aOLD

Description: Obsolete version of wfr2a as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 30-Jul-2020)

Ref Expression
Hypotheses wfr2aOLD.1 RWeA
wfr2aOLD.2 RSeA
wfr2aOLD.3 F=wrecsRAG
Assertion wfr2aOLD XdomFFX=GFPredRAX

Proof

Step Hyp Ref Expression
1 wfr2aOLD.1 RWeA
2 wfr2aOLD.2 RSeA
3 wfr2aOLD.3 F=wrecsRAG
4 fveq2 x=XFx=FX
5 predeq3 x=XPredRAx=PredRAX
6 5 reseq2d x=XFPredRAx=FPredRAX
7 6 fveq2d x=XGFPredRAx=GFPredRAX
8 4 7 eqeq12d x=XFx=GFPredRAxFX=GFPredRAX
9 1 2 3 wfrlem12OLD xdomFFx=GFPredRAx
10 8 9 vtoclga XdomFFX=GFPredRAX