Metamath Proof Explorer


Theorem wfr3g

Description: Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Assertion wfr3g R We A R Se A F Fn A y A F y = H F Pred R A y G Fn A y A G y = H G Pred R A y F = G

Proof

Step Hyp Ref Expression
1 r19.26 y A F y = H F Pred R A y G y = H G Pred R A y y A F y = H F Pred R A y y A G y = H G Pred R A y
2 fveq2 z = w F z = F w
3 fveq2 z = w G z = G w
4 2 3 eqeq12d z = w F z = G z F w = G w
5 4 imbi2d z = w F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y F z = G z F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y F w = G w
6 ra4v w Pred R A z F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y F w = G w F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y w Pred R A z F w = G w
7 fveq2 y = z F y = F z
8 predeq3 y = z Pred R A y = Pred R A z
9 8 reseq2d y = z F Pred R A y = F Pred R A z
10 9 fveq2d y = z H F Pred R A y = H F Pred R A z
11 7 10 eqeq12d y = z F y = H F Pred R A y F z = H F Pred R A z
12 fveq2 y = z G y = G z
13 8 reseq2d y = z G Pred R A y = G Pred R A z
14 13 fveq2d y = z H G Pred R A y = H G Pred R A z
15 12 14 eqeq12d y = z G y = H G Pred R A y G z = H G Pred R A z
16 11 15 anbi12d y = z F y = H F Pred R A y G y = H G Pred R A y F z = H F Pred R A z G z = H G Pred R A z
17 16 rspcva z A y A F y = H F Pred R A y G y = H G Pred R A y F z = H F Pred R A z G z = H G Pred R A z
18 eqtr3 F z = H F Pred R A z H G Pred R A z = H F Pred R A z F z = H G Pred R A z
19 18 ancoms H G Pred R A z = H F Pred R A z F z = H F Pred R A z F z = H G Pred R A z
20 eqtr3 F z = H G Pred R A z G z = H G Pred R A z F z = G z
21 20 ex F z = H G Pred R A z G z = H G Pred R A z F z = G z
22 19 21 syl H G Pred R A z = H F Pred R A z F z = H F Pred R A z G z = H G Pred R A z F z = G z
23 22 expimpd H G Pred R A z = H F Pred R A z F z = H F Pred R A z G z = H G Pred R A z F z = G z
24 predss Pred R A z A
25 fvreseq F Fn A G Fn A Pred R A z A F Pred R A z = G Pred R A z w Pred R A z F w = G w
26 24 25 mpan2 F Fn A G Fn A F Pred R A z = G Pred R A z w Pred R A z F w = G w
27 26 biimpar F Fn A G Fn A w Pred R A z F w = G w F Pred R A z = G Pred R A z
28 27 eqcomd F Fn A G Fn A w Pred R A z F w = G w G Pred R A z = F Pred R A z
29 28 fveq2d F Fn A G Fn A w Pred R A z F w = G w H G Pred R A z = H F Pred R A z
30 23 29 syl11 F z = H F Pred R A z G z = H G Pred R A z F Fn A G Fn A w Pred R A z F w = G w F z = G z
31 30 expd F z = H F Pred R A z G z = H G Pred R A z F Fn A G Fn A w Pred R A z F w = G w F z = G z
32 17 31 syl z A y A F y = H F Pred R A y G y = H G Pred R A y F Fn A G Fn A w Pred R A z F w = G w F z = G z
33 32 ex z A y A F y = H F Pred R A y G y = H G Pred R A y F Fn A G Fn A w Pred R A z F w = G w F z = G z
34 33 impcomd z A F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y w Pred R A z F w = G w F z = G z
35 34 a2d z A F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y w Pred R A z F w = G w F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y F z = G z
36 6 35 syl5 z A w Pred R A z F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y F w = G w F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y F z = G z
37 5 36 wfis2g R We A R Se A z A F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y F z = G z
38 r19.21v z A F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y F z = G z F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y z A F z = G z
39 37 38 sylib R We A R Se A F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y z A F z = G z
40 39 com12 F Fn A G Fn A y A F y = H F Pred R A y G y = H G Pred R A y R We A R Se A z A F z = G z
41 1 40 sylan2br F Fn A G Fn A y A F y = H F Pred R A y y A G y = H G Pred R A y R We A R Se A z A F z = G z
42 41 an4s F Fn A y A F y = H F Pred R A y G Fn A y A G y = H G Pred R A y R We A R Se A z A F z = G z
43 42 com12 R We A R Se A F Fn A y A F y = H F Pred R A y G Fn A y A G y = H G Pred R A y z A F z = G z
44 43 3impib R We A R Se A F Fn A y A F y = H F Pred R A y G Fn A y A G y = H G Pred R A y z A F z = G z
45 eqid A = A
46 44 45 jctil R We A R Se A F Fn A y A F y = H F Pred R A y G Fn A y A G y = H G Pred R A y A = A z A F z = G z
47 eqfnfv2 F Fn A G Fn A F = G A = A z A F z = G z
48 47 ad2ant2r F Fn A y A F y = H F Pred R A y G Fn A y A G y = H G Pred R A y F = G A = A z A F z = G z
49 48 3adant1 R We A R Se A F Fn A y A F y = H F Pred R A y G Fn A y A G y = H G Pred R A y F = G A = A z A F z = G z
50 46 49 mpbird R We A R Se A F Fn A y A F y = H F Pred R A y G Fn A y A G y = H G Pred R A y F = G