Metamath Proof Explorer


Theorem wfrlem1

Description: Lemma for well-ordered recursion. The final item we are interested in is the union of acceptable functions B . This lemma just changes bound variables for later use. (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem1.1 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
Assertion wfrlem1 B = g | z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w

Proof

Step Hyp Ref Expression
1 wfrlem1.1 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
2 fneq1 f = g f Fn x g Fn x
3 fveq1 f = g f y = g y
4 reseq1 f = g f Pred R A y = g Pred R A y
5 4 fveq2d f = g F f Pred R A y = F g Pred R A y
6 3 5 eqeq12d f = g f y = F f Pred R A y g y = F g Pred R A y
7 6 ralbidv f = g y x f y = F f Pred R A y y x g y = F g Pred R A y
8 2 7 3anbi13d f = g f Fn x x A y x Pred R A y x y x f y = F f Pred R A y g Fn x x A y x Pred R A y x y x g y = F g Pred R A y
9 8 exbidv f = g x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y x g Fn x x A y x Pred R A y x y x g y = F g Pred R A y
10 fneq2 x = z g Fn x g Fn z
11 sseq1 x = z x A z A
12 sseq2 x = z Pred R A y x Pred R A y z
13 12 raleqbi1dv x = z y x Pred R A y x y z Pred R A y z
14 predeq3 y = w Pred R A y = Pred R A w
15 14 sseq1d y = w Pred R A y z Pred R A w z
16 15 cbvralvw y z Pred R A y z w z Pred R A w z
17 13 16 bitrdi x = z y x Pred R A y x w z Pred R A w z
18 11 17 anbi12d x = z x A y x Pred R A y x z A w z Pred R A w z
19 raleq x = z y x g y = F g Pred R A y y z g y = F g Pred R A y
20 fveq2 y = w g y = g w
21 14 reseq2d y = w g Pred R A y = g Pred R A w
22 21 fveq2d y = w F g Pred R A y = F g Pred R A w
23 20 22 eqeq12d y = w g y = F g Pred R A y g w = F g Pred R A w
24 23 cbvralvw y z g y = F g Pred R A y w z g w = F g Pred R A w
25 19 24 bitrdi x = z y x g y = F g Pred R A y w z g w = F g Pred R A w
26 10 18 25 3anbi123d x = z g Fn x x A y x Pred R A y x y x g y = F g Pred R A y g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
27 26 cbvexvw x g Fn x x A y x Pred R A y x y x g y = F g Pred R A y z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
28 9 27 bitrdi f = g x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
29 28 cbvabv f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y = g | z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
30 1 29 eqtri B = g | z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w