| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfrfunOLD.1 |
|
| 2 |
|
wfrfunOLD.2 |
|
| 3 |
|
wfrfunOLD.3 |
|
| 4 |
|
vex |
|
| 5 |
4
|
eldm2 |
|
| 6 |
|
dfwrecsOLD |
|
| 7 |
3 6
|
eqtri |
|
| 8 |
7
|
eleq2i |
|
| 9 |
|
eluniab |
|
| 10 |
8 9
|
bitri |
|
| 11 |
|
abid |
|
| 12 |
|
elssuni |
|
| 13 |
12 7
|
sseqtrrdi |
|
| 14 |
11 13
|
sylbir |
|
| 15 |
|
fnop |
|
| 16 |
15
|
ex |
|
| 17 |
|
rsp |
|
| 18 |
17
|
impcom |
|
| 19 |
|
rsp |
|
| 20 |
|
fndm |
|
| 21 |
20
|
sseq2d |
|
| 22 |
20
|
eleq2d |
|
| 23 |
21 22
|
anbi12d |
|
| 24 |
23
|
biimprd |
|
| 25 |
24
|
expd |
|
| 26 |
25
|
impcom |
|
| 27 |
1 2 3
|
wfrfunOLD |
|
| 28 |
|
funssfv |
|
| 29 |
28
|
3adant3l |
|
| 30 |
|
fun2ssres |
|
| 31 |
30
|
3adant3r |
|
| 32 |
31
|
fveq2d |
|
| 33 |
29 32
|
eqeq12d |
|
| 34 |
33
|
biimprd |
|
| 35 |
27 34
|
mp3an1 |
|
| 36 |
35
|
expcom |
|
| 37 |
36
|
com23 |
|
| 38 |
26 37
|
syl6com |
|
| 39 |
38
|
expd |
|
| 40 |
39
|
com34 |
|
| 41 |
19 40
|
sylcom |
|
| 42 |
41
|
adantl |
|
| 43 |
42
|
com14 |
|
| 44 |
18 43
|
syl7 |
|
| 45 |
44
|
exp4a |
|
| 46 |
45
|
pm2.43d |
|
| 47 |
46
|
com34 |
|
| 48 |
16 47
|
syldc |
|
| 49 |
48
|
3impd |
|
| 50 |
49
|
exlimdv |
|
| 51 |
14 50
|
mpdi |
|
| 52 |
51
|
imp |
|
| 53 |
52
|
exlimiv |
|
| 54 |
10 53
|
sylbi |
|
| 55 |
54
|
exlimiv |
|
| 56 |
5 55
|
sylbi |
|