Metamath Proof Explorer


Theorem wfrlem13

Description: Lemma for well-ordered recursion. From here through wfrlem16 , we aim to prove that dom F = A . We do this by supposing that there is an element z of A that is not in dom F . We then define C by extending dom F with the appropriate value at z . We then show that z cannot be an R minimal element of ( A \ dom F ) , meaning that ( A \ dom F ) must be empty, so dom F = A . Here, we show that C is a function extending the domain of F by one. (Contributed by Scott Fenton, 21-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfrlem13.1 R We A
wfrlem13.2 R Se A
wfrlem13.3 F = wrecs R A G
wfrlem13.4 C = F z G F Pred R A z
Assertion wfrlem13 z A dom F C Fn dom F z

Proof

Step Hyp Ref Expression
1 wfrlem13.1 R We A
2 wfrlem13.2 R Se A
3 wfrlem13.3 F = wrecs R A G
4 wfrlem13.4 C = F z G F Pred R A z
5 1 2 3 wfrfun Fun F
6 vex z V
7 fvex G F Pred R A z V
8 6 7 funsn Fun z G F Pred R A z
9 5 8 pm3.2i Fun F Fun z G F Pred R A z
10 7 dmsnop dom z G F Pred R A z = z
11 10 ineq2i dom F dom z G F Pred R A z = dom F z
12 eldifn z A dom F ¬ z dom F
13 disjsn dom F z = ¬ z dom F
14 12 13 sylibr z A dom F dom F z =
15 11 14 eqtrid z A dom F dom F dom z G F Pred R A z =
16 funun Fun F Fun z G F Pred R A z dom F dom z G F Pred R A z = Fun F z G F Pred R A z
17 9 15 16 sylancr z A dom F Fun F z G F Pred R A z
18 dmun dom F z G F Pred R A z = dom F dom z G F Pred R A z
19 10 uneq2i dom F dom z G F Pred R A z = dom F z
20 18 19 eqtri dom F z G F Pred R A z = dom F z
21 4 fneq1i C Fn dom F z F z G F Pred R A z Fn dom F z
22 df-fn F z G F Pred R A z Fn dom F z Fun F z G F Pred R A z dom F z G F Pred R A z = dom F z
23 21 22 bitri C Fn dom F z Fun F z G F Pred R A z dom F z G F Pred R A z = dom F z
24 17 20 23 sylanblrc z A dom F C Fn dom F z