Metamath Proof Explorer


Theorem wfrlem4

Description: Lemma for well-ordered recursion. Properties of the restriction of an acceptable function to the domain of another one. (Contributed by Scott Fenton, 21-Apr-2011) (Revised by AV, 18-Jul-2022)

Ref Expression
Hypothesis wfrlem4.2 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
Assertion wfrlem4 g B h B g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = F g dom g dom h Pred R dom g dom h a

Proof

Step Hyp Ref Expression
1 wfrlem4.2 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
2 1 wfrlem2 g B Fun g
3 2 funfnd g B g Fn dom g
4 fnresin1 g Fn dom g g dom g dom h Fn dom g dom h
5 3 4 syl g B g dom g dom h Fn dom g dom h
6 5 adantr g B h B g dom g dom h Fn dom g dom h
7 1 wfrlem1 B = g | b g Fn b b A a b Pred R A a b a b g a = F g Pred R A a
8 7 abeq2i g B b g Fn b b A a b Pred R A a b a b g a = F g Pred R A a
9 fndm g Fn b dom g = b
10 9 raleqdv g Fn b a dom g g a = F g Pred R A a a b g a = F g Pred R A a
11 10 biimpar g Fn b a b g a = F g Pred R A a a dom g g a = F g Pred R A a
12 rsp a dom g g a = F g Pred R A a a dom g g a = F g Pred R A a
13 11 12 syl g Fn b a b g a = F g Pred R A a a dom g g a = F g Pred R A a
14 13 3adant2 g Fn b b A a b Pred R A a b a b g a = F g Pred R A a a dom g g a = F g Pred R A a
15 14 exlimiv b g Fn b b A a b Pred R A a b a b g a = F g Pred R A a a dom g g a = F g Pred R A a
16 8 15 sylbi g B a dom g g a = F g Pred R A a
17 elinel1 a dom g dom h a dom g
18 16 17 impel g B a dom g dom h g a = F g Pred R A a
19 18 adantlr g B h B a dom g dom h g a = F g Pred R A a
20 fvres a dom g dom h g dom g dom h a = g a
21 20 adantl g B h B a dom g dom h g dom g dom h a = g a
22 resres g dom g dom h Pred R dom g dom h a = g dom g dom h Pred R dom g dom h a
23 predss Pred R dom g dom h a dom g dom h
24 sseqin2 Pred R dom g dom h a dom g dom h dom g dom h Pred R dom g dom h a = Pred R dom g dom h a
25 23 24 mpbi dom g dom h Pred R dom g dom h a = Pred R dom g dom h a
26 1 wfrlem1 B = h | c h Fn c c A a c Pred R A a c a c h a = F h Pred R A a
27 26 abeq2i h B c h Fn c c A a c Pred R A a c a c h a = F h Pred R A a
28 3an6 g Fn b h Fn c b A a b Pred R A a b c A a c Pred R A a c a b g a = F g Pred R A a a c h a = F h Pred R A a g Fn b b A a b Pred R A a b a b g a = F g Pred R A a h Fn c c A a c Pred R A a c a c h a = F h Pred R A a
29 28 2exbii b c g Fn b h Fn c b A a b Pred R A a b c A a c Pred R A a c a b g a = F g Pred R A a a c h a = F h Pred R A a b c g Fn b b A a b Pred R A a b a b g a = F g Pred R A a h Fn c c A a c Pred R A a c a c h a = F h Pred R A a
30 exdistrv b c g Fn b b A a b Pred R A a b a b g a = F g Pred R A a h Fn c c A a c Pred R A a c a c h a = F h Pred R A a b g Fn b b A a b Pred R A a b a b g a = F g Pred R A a c h Fn c c A a c Pred R A a c a c h a = F h Pred R A a
31 29 30 bitri b c g Fn b h Fn c b A a b Pred R A a b c A a c Pred R A a c a b g a = F g Pred R A a a c h a = F h Pred R A a b g Fn b b A a b Pred R A a b a b g a = F g Pred R A a c h Fn c c A a c Pred R A a c a c h a = F h Pred R A a
32 ssinss1 b A b c A
33 32 ad2antrr b A a b Pred R A a b c A a c Pred R A a c b c A
34 nfra1 a a b Pred R A a b
35 nfra1 a a c Pred R A a c
36 34 35 nfan a a b Pred R A a b a c Pred R A a c
37 elinel1 a b c a b
38 rsp a b Pred R A a b a b Pred R A a b
39 37 38 syl5com a b c a b Pred R A a b Pred R A a b
40 elinel2 a b c a c
41 rsp a c Pred R A a c a c Pred R A a c
42 40 41 syl5com a b c a c Pred R A a c Pred R A a c
43 39 42 anim12d a b c a b Pred R A a b a c Pred R A a c Pred R A a b Pred R A a c
44 ssin Pred R A a b Pred R A a c Pred R A a b c
45 44 biimpi Pred R A a b Pred R A a c Pred R A a b c
46 43 45 syl6com a b Pred R A a b a c Pred R A a c a b c Pred R A a b c
47 36 46 ralrimi a b Pred R A a b a c Pred R A a c a b c Pred R A a b c
48 47 ad2ant2l b A a b Pred R A a b c A a c Pred R A a c a b c Pred R A a b c
49 33 48 jca b A a b Pred R A a b c A a c Pred R A a c b c A a b c Pred R A a b c
50 fndm h Fn c dom h = c
51 9 50 ineqan12d g Fn b h Fn c dom g dom h = b c
52 sseq1 dom g dom h = b c dom g dom h A b c A
53 sseq2 dom g dom h = b c Pred R A a dom g dom h Pred R A a b c
54 53 raleqbi1dv dom g dom h = b c a dom g dom h Pred R A a dom g dom h a b c Pred R A a b c
55 52 54 anbi12d dom g dom h = b c dom g dom h A a dom g dom h Pred R A a dom g dom h b c A a b c Pred R A a b c
56 55 imbi2d dom g dom h = b c b A a b Pred R A a b c A a c Pred R A a c dom g dom h A a dom g dom h Pred R A a dom g dom h b A a b Pred R A a b c A a c Pred R A a c b c A a b c Pred R A a b c
57 51 56 syl g Fn b h Fn c b A a b Pred R A a b c A a c Pred R A a c dom g dom h A a dom g dom h Pred R A a dom g dom h b A a b Pred R A a b c A a c Pred R A a c b c A a b c Pred R A a b c
58 49 57 mpbiri g Fn b h Fn c b A a b Pred R A a b c A a c Pred R A a c dom g dom h A a dom g dom h Pred R A a dom g dom h
59 58 imp g Fn b h Fn c b A a b Pred R A a b c A a c Pred R A a c dom g dom h A a dom g dom h Pred R A a dom g dom h
60 59 3adant3 g Fn b h Fn c b A a b Pred R A a b c A a c Pred R A a c a b g a = F g Pred R A a a c h a = F h Pred R A a dom g dom h A a dom g dom h Pred R A a dom g dom h
61 60 exlimivv b c g Fn b h Fn c b A a b Pred R A a b c A a c Pred R A a c a b g a = F g Pred R A a a c h a = F h Pred R A a dom g dom h A a dom g dom h Pred R A a dom g dom h
62 31 61 sylbir b g Fn b b A a b Pred R A a b a b g a = F g Pred R A a c h Fn c c A a c Pred R A a c a c h a = F h Pred R A a dom g dom h A a dom g dom h Pred R A a dom g dom h
63 8 27 62 syl2anb g B h B dom g dom h A a dom g dom h Pred R A a dom g dom h
64 63 adantr g B h B a dom g dom h dom g dom h A a dom g dom h Pred R A a dom g dom h
65 simpr g B h B a dom g dom h a dom g dom h
66 preddowncl dom g dom h A a dom g dom h Pred R A a dom g dom h a dom g dom h Pred R dom g dom h a = Pred R A a
67 64 65 66 sylc g B h B a dom g dom h Pred R dom g dom h a = Pred R A a
68 25 67 eqtrid g B h B a dom g dom h dom g dom h Pred R dom g dom h a = Pred R A a
69 68 reseq2d g B h B a dom g dom h g dom g dom h Pred R dom g dom h a = g Pred R A a
70 22 69 eqtrid g B h B a dom g dom h g dom g dom h Pred R dom g dom h a = g Pred R A a
71 70 fveq2d g B h B a dom g dom h F g dom g dom h Pred R dom g dom h a = F g Pred R A a
72 19 21 71 3eqtr4d g B h B a dom g dom h g dom g dom h a = F g dom g dom h Pred R dom g dom h a
73 72 ralrimiva g B h B a dom g dom h g dom g dom h a = F g dom g dom h Pred R dom g dom h a
74 6 73 jca g B h B g dom g dom h Fn dom g dom h a dom g dom h g dom g dom h a = F g dom g dom h Pred R dom g dom h a