Metamath Proof Explorer


Theorem winafp

Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winafp A Inacc 𝑤 A ω A = A

Proof

Step Hyp Ref Expression
1 winalim2 A Inacc 𝑤 A ω x x = A Lim x
2 vex x V
3 limelon x V Lim x x On
4 2 3 mpan Lim x x On
5 alephle x On x x
6 4 5 syl Lim x x x
7 6 ad2antll A Inacc 𝑤 A ω x = A Lim x x x
8 simprl A Inacc 𝑤 A ω x = A Lim x x = A
9 7 8 sseqtrd A Inacc 𝑤 A ω x = A Lim x x A
10 8 fveq2d A Inacc 𝑤 A ω x = A Lim x cf x = cf A
11 alephsing Lim x cf x = cf x
12 11 ad2antll A Inacc 𝑤 A ω x = A Lim x cf x = cf x
13 10 12 eqtr3d A Inacc 𝑤 A ω x = A Lim x cf A = cf x
14 elwina A Inacc 𝑤 A cf A = A y A z A y z
15 14 simp2bi A Inacc 𝑤 cf A = A
16 15 ad2antrr A Inacc 𝑤 A ω x = A Lim x cf A = A
17 13 16 eqtr3d A Inacc 𝑤 A ω x = A Lim x cf x = A
18 cfle cf x x
19 17 18 eqsstrrdi A Inacc 𝑤 A ω x = A Lim x A x
20 9 19 eqssd A Inacc 𝑤 A ω x = A Lim x x = A
21 20 fveq2d A Inacc 𝑤 A ω x = A Lim x x = A
22 21 8 eqtr3d A Inacc 𝑤 A ω x = A Lim x A = A
23 1 22 exlimddv A Inacc 𝑤 A ω A = A