Metamath Proof Explorer


Theorem winainf

Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winainf A Inacc 𝑤 ω A

Proof

Step Hyp Ref Expression
1 elwina A Inacc 𝑤 A cf A = A x A y A x y
2 cfon cf A On
3 eleq1 cf A = A cf A On A On
4 2 3 mpbii cf A = A A On
5 winainflem A A On x A y A x y ω A
6 4 5 syl3an2 A cf A = A x A y A x y ω A
7 1 6 sylbi A Inacc 𝑤 ω A