| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0suc |
|
| 2 |
|
simp1 |
|
| 3 |
2
|
necon2bi |
|
| 4 |
|
vex |
|
| 5 |
4
|
sucid |
|
| 6 |
|
eleq2 |
|
| 7 |
5 6
|
mpbiri |
|
| 8 |
7
|
adantl |
|
| 9 |
|
breq1 |
|
| 10 |
9
|
rexbidv |
|
| 11 |
|
breq2 |
|
| 12 |
11
|
cbvrexvw |
|
| 13 |
10 12
|
bitrdi |
|
| 14 |
13
|
rspcv |
|
| 15 |
8 14
|
syl |
|
| 16 |
|
eleq2 |
|
| 17 |
16
|
biimpa |
|
| 18 |
17
|
3ad2antl2 |
|
| 19 |
|
nnon |
|
| 20 |
|
onsuc |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
eleq1 |
|
| 23 |
22
|
biimparc |
|
| 24 |
21 23
|
sylan |
|
| 25 |
24
|
3adant3 |
|
| 26 |
|
onelon |
|
| 27 |
25 26
|
sylan |
|
| 28 |
|
simpl1 |
|
| 29 |
28 19
|
syl |
|
| 30 |
|
onsssuc |
|
| 31 |
27 29 30
|
syl2anc |
|
| 32 |
18 31
|
mpbird |
|
| 33 |
|
ssdomg |
|
| 34 |
4 32 33
|
mpsyl |
|
| 35 |
|
domnsym |
|
| 36 |
34 35
|
syl |
|
| 37 |
36
|
nrexdv |
|
| 38 |
37
|
3expia |
|
| 39 |
15 38
|
pm2.65d |
|
| 40 |
39
|
intn3an3d |
|
| 41 |
40
|
rexlimiva |
|
| 42 |
3 41
|
jaoi |
|
| 43 |
1 42
|
syl |
|
| 44 |
43
|
con2i |
|
| 45 |
|
ordom |
|
| 46 |
|
eloni |
|
| 47 |
46
|
3ad2ant2 |
|
| 48 |
|
ordtri1 |
|
| 49 |
45 47 48
|
sylancr |
|
| 50 |
44 49
|
mpbird |
|