Metamath Proof Explorer


Theorem winaon

Description: A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winaon A Inacc 𝑤 A On

Proof

Step Hyp Ref Expression
1 elwina A Inacc 𝑤 A cf A = A x A y A x y
2 cfon cf A On
3 eleq1 cf A = A cf A On A On
4 2 3 mpbii cf A = A A On
5 4 3ad2ant2 A cf A = A x A y A x y A On
6 1 5 sylbi A Inacc 𝑤 A On