Metamath Proof Explorer


Theorem wkslem1

Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021)

Ref Expression
Assertion wkslem1 A = B if- P A = P A + 1 I F A = P A P A P A + 1 I F A if- P B = P B + 1 I F B = P B P B P B + 1 I F B

Proof

Step Hyp Ref Expression
1 fveq2 A = B P A = P B
2 fvoveq1 A = B P A + 1 = P B + 1
3 1 2 eqeq12d A = B P A = P A + 1 P B = P B + 1
4 2fveq3 A = B I F A = I F B
5 1 sneqd A = B P A = P B
6 4 5 eqeq12d A = B I F A = P A I F B = P B
7 1 2 preq12d A = B P A P A + 1 = P B P B + 1
8 7 4 sseq12d A = B P A P A + 1 I F A P B P B + 1 I F B
9 3 6 8 ifpbi123d A = B if- P A = P A + 1 I F A = P A P A P A + 1 I F A if- P B = P B + 1 I F B = P B P B P B + 1 I F B