Metamath Proof Explorer


Theorem wkslem2

Description: Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021)

Ref Expression
Assertion wkslem2 A = B A + 1 = C if- P A = P A + 1 I F A = P A P A P A + 1 I F A if- P B = P C I F B = P B P B P C I F B

Proof

Step Hyp Ref Expression
1 fveq2 A = B P A = P B
2 1 adantr A = B A + 1 = C P A = P B
3 fveq2 A + 1 = C P A + 1 = P C
4 3 adantl A = B A + 1 = C P A + 1 = P C
5 2 4 eqeq12d A = B A + 1 = C P A = P A + 1 P B = P C
6 2fveq3 A = B I F A = I F B
7 1 sneqd A = B P A = P B
8 6 7 eqeq12d A = B I F A = P A I F B = P B
9 8 adantr A = B A + 1 = C I F A = P A I F B = P B
10 2 4 preq12d A = B A + 1 = C P A P A + 1 = P B P C
11 6 adantr A = B A + 1 = C I F A = I F B
12 10 11 sseq12d A = B A + 1 = C P A P A + 1 I F A P B P C I F B
13 5 9 12 ifpbi123d A = B A + 1 = C if- P A = P A + 1 I F A = P A P A P A + 1 I F A if- P B = P C I F B = P B P B P C I F B