Metamath Proof Explorer


Theorem wksonproplem

Description: Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop . (Contributed by AV, 16-Jan-2021) Remove is-walk hypothesis. (Revised by SN, 13-Dec-2024)

Ref Expression
Hypotheses wksonproplem.v V = Vtx G
wksonproplem.b G V A V B V F V P V F A W G B P F A O G B P F Q G P
wksonproplem.d W = g V a Vtx g , b Vtx g f p | f a O g b p f Q g p
Assertion wksonproplem F A W G B P G V A V B V F V P V F A O G B P F Q G P

Proof

Step Hyp Ref Expression
1 wksonproplem.v V = Vtx G
2 wksonproplem.b G V A V B V F V P V F A W G B P F A O G B P F Q G P
3 wksonproplem.d W = g V a Vtx g , b Vtx g f p | f a O g b p f Q g p
4 1 fvexi V V
5 simp1 G V A V B V G V
6 simp2 G V A V B V A V
7 6 1 eleqtrdi G V A V B V A Vtx G
8 simp3 G V A V B V B V
9 8 1 eleqtrdi G V A V B V B Vtx G
10 5 7 9 3 mptmpoopabovd G V A V B V A W G B = f p | f A O G B p f Q G p
11 fveq2 g = G Vtx g = Vtx G
12 11 1 eqtr4di g = G Vtx g = V
13 fveq2 g = G O g = O G
14 13 oveqd g = G a O g b = a O G b
15 14 breqd g = G f a O g b p f a O G b p
16 fveq2 g = G Q g = Q G
17 16 breqd g = G f Q g p f Q G p
18 15 17 anbi12d g = G f a O g b p f Q g p f a O G b p f Q G p
19 3 10 12 12 18 bropfvvvv V V V V F A W G B P G V A V B V F V P V
20 4 4 19 mp2an F A W G B P G V A V B V F V P V
21 3anass G V A V B V G V A V B V
22 21 anbi1i G V A V B V F V P V G V A V B V F V P V
23 df-3an G V A V B V F V P V G V A V B V F V P V
24 22 23 bitr4i G V A V B V F V P V G V A V B V F V P V
25 20 24 sylibr F A W G B P G V A V B V F V P V
26 2 biimpd G V A V B V F V P V F A W G B P F A O G B P F Q G P
27 26 imdistani G V A V B V F V P V F A W G B P G V A V B V F V P V F A O G B P F Q G P
28 25 27 mpancom F A W G B P G V A V B V F V P V F A O G B P F Q G P
29 df-3an G V A V B V F V P V F A O G B P F Q G P G V A V B V F V P V F A O G B P F Q G P
30 28 29 sylibr F A W G B P G V A V B V F V P V F A O G B P F Q G P