Metamath Proof Explorer


Theorem wksonproplemOLD

Description: Obsolete version of wksonproplem as of 13-Dec-2024. (Contributed by AV, 16-Jan-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses wksonproplemOLD.v V = Vtx G
wksonproplemOLD.b G V A V B V F V P V F A W G B P F A O G B P F Q G P
wksonproplemOLD.d W = g V a Vtx g , b Vtx g f p | f a O g b p f Q g p
wksonproplemOLD.w G V A V B V f Q G p f Walks G p
Assertion wksonproplemOLD F A W G B P G V A V B V F V P V F A O G B P F Q G P

Proof

Step Hyp Ref Expression
1 wksonproplemOLD.v V = Vtx G
2 wksonproplemOLD.b G V A V B V F V P V F A W G B P F A O G B P F Q G P
3 wksonproplemOLD.d W = g V a Vtx g , b Vtx g f p | f a O g b p f Q g p
4 wksonproplemOLD.w G V A V B V f Q G p f Walks G p
5 1 fvexi V V
6 simp1 G V A V B V G V
7 simp2 G V A V B V A V
8 7 1 eleqtrdi G V A V B V A Vtx G
9 simp3 G V A V B V B V
10 9 1 eleqtrdi G V A V B V B Vtx G
11 wksv f p | f Walks G p V
12 11 a1i G V A V B V f p | f Walks G p V
13 6 8 10 12 4 3 mptmpoopabovdOLD G V A V B V A W G B = f p | f A O G B p f Q G p
14 fveq2 g = G Vtx g = Vtx G
15 14 1 eqtr4di g = G Vtx g = V
16 fveq2 g = G O g = O G
17 16 oveqd g = G a O g b = a O G b
18 17 breqd g = G f a O g b p f a O G b p
19 fveq2 g = G Q g = Q G
20 19 breqd g = G f Q g p f Q G p
21 18 20 anbi12d g = G f a O g b p f Q g p f a O G b p f Q G p
22 3 13 15 15 21 bropfvvvv V V V V F A W G B P G V A V B V F V P V
23 5 5 22 mp2an F A W G B P G V A V B V F V P V
24 3anass G V A V B V G V A V B V
25 24 anbi1i G V A V B V F V P V G V A V B V F V P V
26 df-3an G V A V B V F V P V G V A V B V F V P V
27 25 26 bitr4i G V A V B V F V P V G V A V B V F V P V
28 23 27 sylibr F A W G B P G V A V B V F V P V
29 2 biimpd G V A V B V F V P V F A W G B P F A O G B P F Q G P
30 29 imdistani G V A V B V F V P V F A W G B P G V A V B V F V P V F A O G B P F Q G P
31 28 30 mpancom F A W G B P G V A V B V F V P V F A O G B P F Q G P
32 df-3an G V A V B V F V P V F A O G B P F Q G P G V A V B V F V P V F A O G B P F Q G P
33 31 32 sylibr F A W G B P G V A V B V F V P V F A O G B P F Q G P