Metamath Proof Explorer


Theorem wksv

Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021)

Ref Expression
Assertion wksv f p | f Walks G p V

Proof

Step Hyp Ref Expression
1 fvex Vtx G V
2 fvex iEdg G V
3 2 dmex dom iEdg G V
4 wrdexg dom iEdg G V Word dom iEdg G V
5 3 4 mp1i Vtx G V Word dom iEdg G V
6 wrdexg Vtx G V Word Vtx G V
7 eqid iEdg G = iEdg G
8 7 wlkf f Walks G p f Word dom iEdg G
9 8 adantl Vtx G V f Walks G p f Word dom iEdg G
10 eqid Vtx G = Vtx G
11 10 wlkpwrd f Walks G p p Word Vtx G
12 11 adantl Vtx G V f Walks G p p Word Vtx G
13 5 6 9 12 opabex2 Vtx G V f p | f Walks G p V
14 1 13 ax-mp f p | f Walks G p V