Database
GRAPH THEORY
Walks, paths and cycles
Walks
wksv
Next ⟩
wlkn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
wksv
Description:
The class of walks is a set.
(Contributed by
AV
, 15-Jan-2021)
Ref
Expression
Assertion
wksv
⊢
f
p
|
f
Walks
⁡
G
p
∈
V
Proof
Step
Hyp
Ref
Expression
1
fvex
⊢
Vtx
⁡
G
∈
V
2
fvex
⊢
iEdg
⁡
G
∈
V
3
2
dmex
⊢
dom
⁡
iEdg
⁡
G
∈
V
4
wrdexg
⊢
dom
⁡
iEdg
⁡
G
∈
V
→
Word
dom
⁡
iEdg
⁡
G
∈
V
5
3
4
mp1i
⊢
Vtx
⁡
G
∈
V
→
Word
dom
⁡
iEdg
⁡
G
∈
V
6
wrdexg
⊢
Vtx
⁡
G
∈
V
→
Word
Vtx
⁡
G
∈
V
7
eqid
⊢
iEdg
⁡
G
=
iEdg
⁡
G
8
7
wlkf
⊢
f
Walks
⁡
G
p
→
f
∈
Word
dom
⁡
iEdg
⁡
G
9
8
adantl
⊢
Vtx
⁡
G
∈
V
∧
f
Walks
⁡
G
p
→
f
∈
Word
dom
⁡
iEdg
⁡
G
10
eqid
⊢
Vtx
⁡
G
=
Vtx
⁡
G
11
10
wlkpwrd
⊢
f
Walks
⁡
G
p
→
p
∈
Word
Vtx
⁡
G
12
11
adantl
⊢
Vtx
⁡
G
∈
V
∧
f
Walks
⁡
G
p
→
p
∈
Word
Vtx
⁡
G
13
5
6
9
12
opabex2
⊢
Vtx
⁡
G
∈
V
→
f
p
|
f
Walks
⁡
G
p
∈
V
14
1
13
ax-mp
⊢
f
p
|
f
Walks
⁡
G
p
∈
V