Metamath Proof Explorer


Theorem wlk1ewlk

Description: A walk is an s-walk "on the edge level" (with s=1) according to Aksoy et al. (Contributed by AV, 5-Jan-2021)

Ref Expression
Assertion wlk1ewlk F Walks G P F G EdgWalks 1

Proof

Step Hyp Ref Expression
1 eqid iEdg G = iEdg G
2 1 wlkf F Walks G P F Word dom iEdg G
3 1 wlk1walk F Walks G P k 1 ..^ F 1 iEdg G F k 1 iEdg G F k
4 wlkv F Walks G P G V F V P V
5 4 simp1d F Walks G P G V
6 1nn0 1 0
7 nn0xnn0 1 0 1 0 *
8 6 7 mp1i F Walks G P 1 0 *
9 1 isewlk G V 1 0 * F Word dom iEdg G F G EdgWalks 1 F Word dom iEdg G k 1 ..^ F 1 iEdg G F k 1 iEdg G F k
10 5 8 2 9 syl3anc F Walks G P F G EdgWalks 1 F Word dom iEdg G k 1 ..^ F 1 iEdg G F k 1 iEdg G F k
11 2 3 10 mpbir2and F Walks G P F G EdgWalks 1