Metamath Proof Explorer


Theorem wlk1walk

Description: A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020)

Ref Expression
Hypothesis wlk1walk.i I = iEdg G
Assertion wlk1walk F Walks G P k 1 ..^ F 1 I F k 1 I F k

Proof

Step Hyp Ref Expression
1 wlk1walk.i I = iEdg G
2 wlkv F Walks G P G V F V P V
3 eqid Vtx G = Vtx G
4 eqid iEdg G = iEdg G
5 3 4 iswlk G V F V P V F Walks G P F Word dom iEdg G P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i
6 fvex I F k 1 V
7 6 inex1 I F k 1 I F k V
8 fzo0ss1 1 ..^ F 0 ..^ F
9 8 sseli k 1 ..^ F k 0 ..^ F
10 wkslem1 i = k if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
11 10 rspcv k 0 ..^ F i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
12 9 11 syl k 1 ..^ F i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
13 12 imp k 1 ..^ F i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k
14 elfzofz k 1 ..^ F k 1 F
15 fz1fzo0m1 k 1 F k 1 0 ..^ F
16 wkslem1 i = k 1 if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1
17 16 rspcv k 1 0 ..^ F i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1
18 14 15 17 3syl k 1 ..^ F i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1
19 18 imp k 1 ..^ F i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1
20 df-ifp if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k
21 elfzoelz k 1 ..^ F k
22 zcn k k
23 eqidd k k 1 = k 1
24 npcan1 k k - 1 + 1 = k
25 wkslem2 k 1 = k 1 k - 1 + 1 = k if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1 if- P k 1 = P k iEdg G F k 1 = P k 1 P k 1 P k iEdg G F k 1
26 23 24 25 syl2anc k if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1 if- P k 1 = P k iEdg G F k 1 = P k 1 P k 1 P k iEdg G F k 1
27 21 22 26 3syl k 1 ..^ F if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1 if- P k 1 = P k iEdg G F k 1 = P k 1 P k 1 P k iEdg G F k 1
28 df-ifp if- P k 1 = P k iEdg G F k 1 = P k 1 P k 1 P k iEdg G F k 1 P k 1 = P k iEdg G F k 1 = P k 1 ¬ P k 1 = P k P k 1 P k iEdg G F k 1
29 sneq P k 1 = P k P k 1 = P k
30 29 eqeq2d P k 1 = P k iEdg G F k 1 = P k 1 iEdg G F k 1 = P k
31 fvex P k V
32 31 snid P k P k
33 1 fveq1i I F k 1 = iEdg G F k 1
34 33 eleq2i P k I F k 1 P k iEdg G F k 1
35 eleq2 iEdg G F k 1 = P k P k iEdg G F k 1 P k P k
36 34 35 syl5bb iEdg G F k 1 = P k P k I F k 1 P k P k
37 32 36 mpbiri iEdg G F k 1 = P k P k I F k 1
38 eleq2 iEdg G F k = P k P k iEdg G F k P k P k
39 32 38 mpbiri iEdg G F k = P k P k iEdg G F k
40 1 fveq1i I F k = iEdg G F k
41 39 40 eleqtrrdi iEdg G F k = P k P k I F k
42 37 41 anim12i iEdg G F k 1 = P k iEdg G F k = P k P k I F k 1 P k I F k
43 42 ex iEdg G F k 1 = P k iEdg G F k = P k P k I F k 1 P k I F k
44 30 43 syl6bi P k 1 = P k iEdg G F k 1 = P k 1 iEdg G F k = P k P k I F k 1 P k I F k
45 44 imp P k 1 = P k iEdg G F k 1 = P k 1 iEdg G F k = P k P k I F k 1 P k I F k
46 45 com12 iEdg G F k = P k P k 1 = P k iEdg G F k 1 = P k 1 P k I F k 1 P k I F k
47 46 adantl P k = P k + 1 iEdg G F k = P k P k 1 = P k iEdg G F k 1 = P k 1 P k I F k 1 P k I F k
48 fvex P k + 1 V
49 31 48 prss P k iEdg G F k P k + 1 iEdg G F k P k P k + 1 iEdg G F k
50 1 eqcomi iEdg G = I
51 50 fveq1i iEdg G F k = I F k
52 51 eleq2i P k iEdg G F k P k I F k
53 52 biimpi P k iEdg G F k P k I F k
54 53 adantr P k iEdg G F k P k + 1 iEdg G F k P k I F k
55 49 54 sylbir P k P k + 1 iEdg G F k P k I F k
56 37 55 anim12i iEdg G F k 1 = P k P k P k + 1 iEdg G F k P k I F k 1 P k I F k
57 56 ex iEdg G F k 1 = P k P k P k + 1 iEdg G F k P k I F k 1 P k I F k
58 30 57 syl6bi P k 1 = P k iEdg G F k 1 = P k 1 P k P k + 1 iEdg G F k P k I F k 1 P k I F k
59 58 imp P k 1 = P k iEdg G F k 1 = P k 1 P k P k + 1 iEdg G F k P k I F k 1 P k I F k
60 59 com12 P k P k + 1 iEdg G F k P k 1 = P k iEdg G F k 1 = P k 1 P k I F k 1 P k I F k
61 60 adantl ¬ P k = P k + 1 P k P k + 1 iEdg G F k P k 1 = P k iEdg G F k 1 = P k 1 P k I F k 1 P k I F k
62 47 61 jaoi P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k P k 1 = P k iEdg G F k 1 = P k 1 P k I F k 1 P k I F k
63 62 com12 P k 1 = P k iEdg G F k 1 = P k 1 P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k P k I F k 1 P k I F k
64 fvex P k 1 V
65 64 31 prss P k 1 iEdg G F k 1 P k iEdg G F k 1 P k 1 P k iEdg G F k 1
66 50 fveq1i iEdg G F k 1 = I F k 1
67 66 eleq2i P k iEdg G F k 1 P k I F k 1
68 67 biimpi P k iEdg G F k 1 P k I F k 1
69 40 eleq2i P k I F k P k iEdg G F k
70 69 38 syl5bb iEdg G F k = P k P k I F k P k P k
71 32 70 mpbiri iEdg G F k = P k P k I F k
72 68 71 anim12i P k iEdg G F k 1 iEdg G F k = P k P k I F k 1 P k I F k
73 72 ex P k iEdg G F k 1 iEdg G F k = P k P k I F k 1 P k I F k
74 73 adantl P k 1 iEdg G F k 1 P k iEdg G F k 1 iEdg G F k = P k P k I F k 1 P k I F k
75 65 74 sylbir P k 1 P k iEdg G F k 1 iEdg G F k = P k P k I F k 1 P k I F k
76 75 adantl ¬ P k 1 = P k P k 1 P k iEdg G F k 1 iEdg G F k = P k P k I F k 1 P k I F k
77 76 com12 iEdg G F k = P k ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k I F k 1 P k I F k
78 77 adantl P k = P k + 1 iEdg G F k = P k ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k I F k 1 P k I F k
79 67 52 anbi12i P k iEdg G F k 1 P k iEdg G F k P k I F k 1 P k I F k
80 79 biimpi P k iEdg G F k 1 P k iEdg G F k P k I F k 1 P k I F k
81 80 ex P k iEdg G F k 1 P k iEdg G F k P k I F k 1 P k I F k
82 81 adantl P k 1 iEdg G F k 1 P k iEdg G F k 1 P k iEdg G F k P k I F k 1 P k I F k
83 65 82 sylbir P k 1 P k iEdg G F k 1 P k iEdg G F k P k I F k 1 P k I F k
84 83 adantl ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k iEdg G F k P k I F k 1 P k I F k
85 84 com12 P k iEdg G F k ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k I F k 1 P k I F k
86 85 adantr P k iEdg G F k P k + 1 iEdg G F k ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k I F k 1 P k I F k
87 49 86 sylbir P k P k + 1 iEdg G F k ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k I F k 1 P k I F k
88 87 adantl ¬ P k = P k + 1 P k P k + 1 iEdg G F k ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k I F k 1 P k I F k
89 78 88 jaoi P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k I F k 1 P k I F k
90 89 com12 ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k P k I F k 1 P k I F k
91 63 90 jaoi P k 1 = P k iEdg G F k 1 = P k 1 ¬ P k 1 = P k P k 1 P k iEdg G F k 1 P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k P k I F k 1 P k I F k
92 28 91 sylbi if- P k 1 = P k iEdg G F k 1 = P k 1 P k 1 P k iEdg G F k 1 P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k P k I F k 1 P k I F k
93 27 92 syl6bi k 1 ..^ F if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1 P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k P k I F k 1 P k I F k
94 93 com3r P k = P k + 1 iEdg G F k = P k ¬ P k = P k + 1 P k P k + 1 iEdg G F k k 1 ..^ F if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1 P k I F k 1 P k I F k
95 20 94 sylbi if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k k 1 ..^ F if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1 P k I F k 1 P k I F k
96 95 com12 k 1 ..^ F if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1 P k I F k 1 P k I F k
97 96 adantr k 1 ..^ F i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i if- P k = P k + 1 iEdg G F k = P k P k P k + 1 iEdg G F k if- P k 1 = P k - 1 + 1 iEdg G F k 1 = P k 1 P k 1 P k - 1 + 1 iEdg G F k 1 P k I F k 1 P k I F k
98 13 19 97 mp2d k 1 ..^ F i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i P k I F k 1 P k I F k
99 98 ancoms i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i k 1 ..^ F P k I F k 1 P k I F k
100 inelcm P k I F k 1 P k I F k I F k 1 I F k
101 99 100 syl i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i k 1 ..^ F I F k 1 I F k
102 hashge1 I F k 1 I F k V I F k 1 I F k 1 I F k 1 I F k
103 7 101 102 sylancr i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i k 1 ..^ F 1 I F k 1 I F k
104 103 ralrimiva i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i k 1 ..^ F 1 I F k 1 I F k
105 104 3ad2ant3 F Word dom iEdg G P : 0 F Vtx G i 0 ..^ F if- P i = P i + 1 iEdg G F i = P i P i P i + 1 iEdg G F i k 1 ..^ F 1 I F k 1 I F k
106 5 105 syl6bi G V F V P V F Walks G P k 1 ..^ F 1 I F k 1 I F k
107 2 106 mpcom F Walks G P k 1 ..^ F 1 I F k 1 I F k