Metamath Proof Explorer


Theorem wlkRes

Description: Restrictions of walks (i.e. special kinds of walks, for example paths - see pthsfval ) are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 30-Dec-2020) (Proof shortened by AV, 15-Jan-2021)

Ref Expression
Hypothesis wlkRes.1 f W G p f Walks G p
Assertion wlkRes f p | f W G p φ V

Proof

Step Hyp Ref Expression
1 wlkRes.1 f W G p f Walks G p
2 1 gen2 f p f W G p f Walks G p
3 wksv f p | f Walks G p V
4 opabbrex f p f W G p f Walks G p f p | f Walks G p V f p | f W G p φ V
5 2 3 4 mp2an f p | f W G p φ V