Database
GRAPH THEORY
Walks, paths and cycles
Walks
wlkRes
Metamath Proof Explorer
Description: Restrictions of walks (i.e. special kinds of walks, for example paths -
see pthsfval ) are sets. (Contributed by Alexander van der Vekens , 1-Nov-2017) (Revised by AV , 30-Dec-2020) (Proof shortened by AV , 15-Jan-2021)
Ref
Expression
Hypothesis
wlkRes.1
⊢ f W ⁡ G p → f Walks ⁡ G p
Assertion
wlkRes
⊢ f p | f W ⁡ G p ∧ φ ∈ V
Proof
Step
Hyp
Ref
Expression
1
wlkRes.1
⊢ f W ⁡ G p → f Walks ⁡ G p
2
1
gen2
⊢ ∀ f ∀ p f W ⁡ G p → f Walks ⁡ G p
3
wksv
⊢ f p | f Walks ⁡ G p ∈ V
4
opabbrex
⊢ ∀ f ∀ p f W ⁡ G p → f Walks ⁡ G p ∧ f p | f Walks ⁡ G p ∈ V → f p | f W ⁡ G p ∧ φ ∈ V
5
2 3 4
mp2an
⊢ f p | f W ⁡ G p ∧ φ ∈ V